764 J. Med. Chem. 2004, 47, 764—767

Performance of 3D-Database Molecular Docking Studies into Homology Models
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The performance of docking studies into protein active sites constructed by homology model
building was investigated using CDK2 and factor Vlla screening data sets. When the sequence
identity between model and template near the binding site area is greater than approximately
50%, roughly 5 times more active compounds are identified than would be found randomly.
This performance is comparable to docking to crystal structures.

Introduction

Despite the progress in X-ray crystallography and
high-field NMR structure elucidation methods, it is still
fairly common not to have the structures of the target
receptors available, particularly in the early phases of
a drug discovery project. Often one will try to construct
3D-models based on the structures of homologous
proteins. The performance of homology model building
approaches is well understood and documented. In
general, such models correctly predict the overall fold,
but in regions of low sequence homology (often the
ligand binding site) the model may be less accurate. The
technology for generating homology models has been
optimized to the point where completely automated
generation of homology models for entire genomes is
now feasible.12

One of the possible applications of homology-built
models is in the docking and scoring of 3D-databases of
compounds. The 3D-database docking into experimen-
tally determined protein structures is known to be a
very effective strategy to identify novel binders and
chemotypes.®* For example, Doman et al. recently
showed that docking into the structure of protein
tyrosine phosphatase-1B led to a very high enrichment
with actives relative to high-throughput screening of a
corporate collection against this target.> Various authors
have successfully used homology models for their dock-
ing studies. However, to the best of our knowledge, no
one has done a systematic analysis of the performance
of molecular docking methods applied to homology
models in comparison to crystal structures. In this
paper, we describe the results of a retrospective analysis
of homology docking using datasets from factor Vlla
inhibitor and CDK2-antagonist projects. The datasets
were derived from both screening libraries and directed
combinatorial synthesis. We will show that when the
sequence homology in the binding site region is greater
than 50%, homology models can be used very effectively
for docking, while the results obtained with less ho-
mologous models vary but are never worse than random
selection of compounds.
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Methods

Homology Model Building. Reference crystal structures
for factor V1la had PDB reference codes® 1dan and 1cvw. Eight
homology models were constructed (method described below)
for factor VIla. The models were all based on serine proteases
with sequence identity near the binding site vs factor Vlla
varying from 37% to 77%. The template structures upon which
the homology models were based were trypsin (2tbs, 1tnk),
factor Xa (1fOr, 1fjs), heparin binding protein (1a7s, 1fy3), and
collagenase (lazz, 2hlc). These eight serine protease structures
themselves were also used in these docking studies to identify
factor Vlla ligands and are referred to later in this paper as
“similar structures” or “template structures.”

Reference crystal structures for CDK2 were 1hck and 1ckp.
Four homology models were constructed on the basis of other
kinase structures with sequence identity vs CDK2 varying
from 43% to 60% near the binding siete. These template kinase
structures were MAP Kkinase (3erk, 1pme) and Erk2 Kinase
(1lp4, 1daw). Again, these kinase structures themselves
(“similar” structures) were also used for docking to identify
CDK2 ligands.

All homology models were generated using MOE.” Tradi-
tionally, the sequence from the template structure is first
aligned to or threaded along the target structure. In our case,
rather than doing a sequence-to-sequence alignment, the
template crystal structure was structurally superposed onto
one of the reference target crystal structures (1dan for factor
Vlla; 1hck for CDK2). This ensured that appropriate residues
would be used in the model structure. By use of this alignment,
homology models were generated in MOE using default
parameters.

Screening Data. For factor Vlla, approximately 21 000
small molecules were docked. Approximately 13 000 of these
were chemically diverse compounds from a general screening
library; 8000 were compounds synthesized by project chemists.
All of these compounds had been screened for activity. Those
molecules with a K| less than 10 uM or inhibition greater than
50% at 30 uM were considered active. There were 352 active
compounds in this set, with 18 active scaffolds. Three scaffolds
had only one representative structure in the database.

The CDK2 screening set consisted of approximately 17 000
compounds. Approximately 13 000 of these were chemically
diverse compounds taken from a general screening library;
3000 were combinatorial synthetic compounds designed and
synthesized by project chemists and 1000 were compounds
selected from the ACD? based on chemical similarity to known
literature actives. All compounds were tested, and those with
an 1Csg less than 25 uM or an inhibition greater than 50% at
10 uM were considered active. There were 367 active com-
pounds in the dataset on 15 different scaffolds.

Molecular Docking. The program UCSF DOCK (version
4.0)°"* was used to dock and score different conformations and
configurations of molecules in the databases. Rigid body
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Figure 1. Plot of enrichment of active compounds selected
by docking vs sequence identity of residues near the binding
site. Values at 100% identity are the actual crystal structures
(i.e., 1dan and 1cvw for factor Vlla; 1hck and 1ckp for CDK2).
Random (enrichment equal to 1) is given by horizontal line.
Note overplot of kinase homology enrichmet (value = 2.3) by
“similar” structure enrichment.

Table 1. Average Enrichment of Actives for Homology Models?

target  crystal structure sequence id >50% sequence id <50%

factor Vlla 5.7 6.6 1.22
CDK2 45 3.1 35
both 51+23 54432 212413

a Qutlier removed from average calculations.

docking was done for the target crystal structures and homo-
logy models. For “similar” structures, docking was skipped and
the docked configurations of the molecules using the crystal
structure were rescored, following commonly used practices
in consensus scoring. The DOCK energy scoring was used to
rank all the molecules in all cases. For each molecule in the
dataset, 10 different conformations per stereoisomer were
generated by an in-house conformational analysis program
(CONAN)*2 and were rigidly docked. The lowest DOCK energy
score of the 10 conformations was used as the score of the
molecule for ranking. The top 100 ranking molecules were used
in the analysis. For factor VIla, 100 molecules represent 0.5%
of the dataset. For CDK2, they represent 0.6%. A small
number of molecules was selected because we were considering
virtual screening as a mechanism to limit the actual number
of compounds purchased or synthesized.

Energy scoring was done using Kollman united atom
parameters for the protein,'® while Kollman all-atom van der
Waal parameters'* and Gasteiger charges'>® were used for
the molecules.

Results

We define “enrichment” of actives and scaffolds as the
ratio of the number of active compounds (scaffolds)
identified in the top 100 ranked compounds to the
number of active compounds (scaffolds) identified in a
randomly picked set of 100 compounds. The random
number of actives was calculated analytically (% data-
base search x total number of actives); the number of
random scaffolds was determined computationally by
sampling 100 compounds randomly for 5000 trials. Plots
of the compound and scaffold enrichment as a function
of the sequence identity of the target structure vs the
template structure are given in Figures 1 and 2,
respectively. Values at 100% identity are the actual
crystal structures (i.e., 1dan and lcvw for factor Vlla;
1hck and 1ckp for CDK2). Only residues within 6 A of
the bound crystal ligand were considered for these plots.
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Figure 2. Plot of enrichment of scaffolds selected by docking
vs sequence identity of residues near the binding site. Values
at 100% identity are the actual crystal structures (i.e., 1dan
and lcvw for factor Vlla; 1hck and 1ckp for CDK2). Random
(enrichment equal to 1) is given by horizontal line.

Table 2. Average Scaffold Enrichment Using Homology
Models

target crystal structure sequence id >50% sequence id <50%

factor Vlla 4.0 3.8 1.7
CDK2 2.0 2.0 1.8
both 3.0+15 31+14 1.6 £ 0.5

As can be seen in Figure 1, enrichment is always
better than random. In addition, the data in Figure 1
can be divided roughly into two groups: those with
enrichment values from homology with sequence iden-
tity greater than ~60% and those with sequence identity
less than or equal to 50%. Using the two-sample t-test
to test whether the two groups could come from the
same distribution and thus have the same mean (null
hypothesis) yields P = 0.059 (t = 2.16 for df = 9), with
a 95% confidence interval of the true difference of the
mean values —0.16 to 6.73. Although the P value is
somewhat high, in conjunction with additional statisti-
cal analysis dividing the data into such groups (de-
scribed below) we feel it is sufficient to consider these
groups separately. For simplicity, we refer to the data
into those with sequence identity greater than 50% and
those with less than 50% identity.

When the sequence identity is above ~50%, the
enrichment is consistently far better than random. This
is true for both homology models and template similar
structures. The enrichment for the homology models
with sequence identity above 50% is, on average, 5 times
better than random, roughly the same as for the actual
target crystal structures. For the “similar” structures,
the enrichment is about 3 times better than random.
With lower sequence identity, enrichment is roughly 2
times better than random, taking both homology models
and “similar” structures together. (Note that in Figure
1, the symbol for the enrichment value (2.3) of a kinase
homology model is hidden underneath the enrichment
value for a “similar” structure.)

In Figure 1, one of the homology models with se-
guence identity of approximately 50% performs ex-
tremely well. This outlier behavior disappears when
larger numbers of top-ranking molecules are considered;
in particular, when the 1000 top-ranking molecules are
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Figure 3. Plot of rmsd (of homology model relative to crystal
structure) vs sequence identity of residues near the binding
site. Three groups are evident: (a) sequence identity 100%,
rmsd < 1; (b) sequence identity of >50%, rmsd < 2; (c)
sequence identity of <50%, rmsd > 2.

used in the analysis, the enrichment for this model is
reduced to the level of the other like homology models.

Average enrichment values for the reference target
crystal structures and homology models only are sum-
marized in Table 1. The mean and standard deviations
for the homology models taken together is tabulated
there. We note that for CDK2, the performance of the
homology models is essentially flat; that is, we consider
an enrichment of 3.1 roughly equivalent to 3.5.

Scaffold enrichment is given in Figure 2. Again,
values at 100% identity are the actual crystal structures
(i.e., 1dan and lcvw for factor Vlla; 1hck and 1ckp for
CDK2). As can be seen there, when the sequence
identity is above 50%, the scaffold enrichment is more
likely to be better than random. For homology models,
the enrichment is roughly 3 times better than random,
again comparable to enrichments for the target crystal
structure. For “similar” protein structures, the scaffold
enrichment is 2 times better than random. (Note that
some data points are coincident in Figure 2.) With lower
sequence identity, scaffold enrichment is roughly 2
times random, taking both homology models and “simi-
lar” structures together. Average scaffold enrichment
values for the target crystal structures and homology
models are summarized in Table 2. The mean and
standard deviations for the homology models taken
together are also tabulated in Table 2.

Considering both the factor Vlla and CDK2 datasets
together, enrichment of active compounds and scaffolds
for homology models generated from templates with
sequence identity greater than 50% is similar to enrich-
ments from the target crystal structure. An explanation
for this 50% cutoff may be found in the quality of these
homology models: the better they resemble the crystal
structure, the more the performance becomes compar-
able. This can be seen in Figure 3, which contains a plot
of the root-mean-square deviation (rmsd) between the
binding site residues of the homology models and the
target crystal structures (one “reference” crystal struc-
ture was used, 1dan for factor Vlla and 1hck for CDK2)
as a function of sequence identity. All backbone atoms
of all residues near the binding site were used in these
calculations.

Roughly three clusters of data appear in Figure 3: (i)
the reference crystal structures (100% homology), which
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typically have rmsd values less than 1 A; (ii) the ho-
mology models with sequence identities greater than
50%, which have rmsd values less than 2 A; (iii) the
homology models with sequence identities less than
50%, which display rmsd values greater than 2 A. Using
the two-sample t-test reveals that groups ii and iii come
from different population distributions (P = 0.0018; t
= —4.35; df = 9). Thus, when the homology model is
within 2 A of the true crystal structure, virtual screen-
ing of a database of compounds is likely to identify active
compounds and novel scaffolds. Since there is no a priori
way to know the quality of the homology model in the
absence of the corresponding crystal structure, the 50%
sequence identity rule-of-thumb seems a pragmatic way
to estimate the performance of database docking stud-
ies.

The performance of homology models and the “tem-
plate” structure upon which the homology model was
based was also compared. We examined the different
number of active molecules identified as well as the
different number of scaffolds identified. We found that
when the sequence identity to the target structure was
greater than 50%, the homology models on average
identified three more active molecules and two more
active scaffolds. At lower sequence identity, the number
of active molecules and scaffolds identified was roughly
the same. This suggests that for proteins with sequence
identity greater than 50%, the time and effort to
generate a homology model would be worthwhile, since
a greater number of actives and, in particular, more
scaffolds would be found. That is not to say that crystal
structures of similar targets, with high sequence iden-
tity to the target structure, would not identify active
compounds; they do. Rather, the homology models
generated from such structures would identify even
more scaffolds. On the other hand, at lower sequence
identity, using a homology model or a “similar” structure
would identify a comparable number of actives; conse-
quently, generating such a model in this case may not
be necessary.

Discussion

It has become routine in drug discovery projects to
perform virtual screening using computer programs
such as DOCK*17~19 in order to prioritize compounds
for biological testing. In nearly all published studies,
one or more crystal structures of the target protein have
been used for the docking. An exception is the work of
Ring et al.?% who identified inhibitors of serine and
cysteine proteases on the basis of homology models.
However, to the best of our knowledge, a systematic
study of the performance of homology models in the
context of identifying novel leads has not been done
before. Schafferhans and Klebe?! used homology models
to correctly identify crystal binding modes of bound
ligands. They found, similarly to us, that a 40% se-
guence identity was needed in order to obtain reliable
results.

It remains possible that a sequence identity lower
than 50% would be sufficient to generate a homology
model that would consistently identify active com-
pounds. The 20—30% homology band has been called,
by some authors, the “twilight zone” because the quality
of homology models may vary widely.?2 Generally, when
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the sequence identity exceeds 30%, reliable homology
models can be constructed.?® It should be noted that our
50% cutoff was derived using homology models gener-
ated with only a single template structure. Other
homology modeling programs use multiple structures
rather than single structures.?* Such models could have
an rmsd vs the true target crystal structure of less than
2 A and, as our data suggest, identify novel leads and
have enrichments comparable to that of the true crystal
structure. In this work, we were not trying to evaluate
the quality of homology models but rather to provide
some guidelines for when homology models could be
useful in docking.

It is also possible that alternative methods of scoring
could improve our results. We simply used the DOCK
energy scoring. A variety of different scoring functions
exist, and their ability to identify leads has been shown
to vary.?® In addition, consensus scoring has been used
to improve the hit rates in docking.’® Conceivably,
different homology models based on the same template
structure could be used and a consensus score could be
derived in this manner.

The enrichment values for the model-built structures
are very good when compared to the crystal structure
enrichment. The crystal structure enrichments for
retrieving active compounds (5.7 for factor Vlla; 4.5 for
CDKZ2) are in fact rather low in light of the maximal
possible enrichment (60 for factor Vlla; 46 for CDK2).
There could be many reasons for this. Although the
crystal structures used here are all of reasonably high
resolution (for 1dan, 2.0 A; for 1cvw, 2.28 A; for 1hck,
1.90 A; for 1ckp, 2.05 A), representing an estimated
standard deviation in atomic coordinates of less than
0.4 A, they each represent only a single low-energy
conformation of the protein. For factor Vlla there can
be considerable side chain movement and some inhibi-
tors cannot dock with the protein adopting these rota-
mer conformations. For CDK2, all compounds of par-
ticular scaffolds could be docked into the ATP binding
site, indicating again that these particular crystal
conformations could not accommodate these scaffolds.

Finally, we note that although we have used for
simplicity 50% as a cutoff, our data cover only sequence
identity greater than ~60% and sequence identity less
than or equal to 50%. To be exact, two values are needed
to characterize our data set. At greater than ~60%
identity, the enrichment is ~5 times better than ran-
dom, but with sequence identity less than ~50%, the
enrichment is ~2 times better than random.

Conclusions

When a homology model is generated using a tem-
plate structure with sequence identity greater than 50%
to the target receptor, the number of active molecules
identified was on average 5 times the number that
would be found randomly while the number of active
scaffolds was on average 3 times better than random.
“Similar” structures (the underlying template structure
used to generate the homology model) identified fewer
active molecules and active scaffolds at this level of
sequence identity. We suggest that the 50% cutoff is due
in part to the quality of the homology model; above this
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value, the rmsd vs the crystal structure is in general
less than 2 A.
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